Source code for autoflow.constants

import enum
import re

from autoflow.utils.ml_task import MLTask


[docs]class ExperimentType(enum.Enum): AUTO = "auto_modeling" MANUAL = "manual_modeling" ENSEMBLE = "ensemble_modeling"
binary_classification_task = MLTask("classification", "binary", "classifier") multiclass_classification_task = MLTask("classification", "multiclass", "classifier") multilabel_classification_task = MLTask("classification", "multilabel", "classifier") regression_task = MLTask("regression", "regression", "regressor") PHASE1 = "preprocessing" PHASE2 = "estimating" SERIES_CONNECT_LEADER_TOKEN = "#" SERIES_CONNECT_SEPARATOR_TOKEN = "|" NATIVE_FEATURE_GROUPS = ("text", "date", "cat", "highC_cat", "num") AUXILIARY_FEATURE_GROUPS = ("id", "target", "ignore") UNIQUE_FEATURE_GROUPS = ("id", "target") NAN_FEATURE_GROUPS = ("nan", "highR_nan") VARIABLE_PATTERN = re.compile(f"[a-zA-Z_][a-zA-Z_0-9]]*") JOBLIB_CACHE = "/tmp/joblib_cache" ITERATIONS_BUDGET_MODE = "iterations" SUBSAMPLES_BUDGET_MODE = "subsamples" RESOURCE_MANAGER_CLOSE_ALL_LOGGER = "ResourceManager.close_all" CONNECTION_POOL_CLOSE_MSG = "Connection pool in ResourceManger all closed." START_SAFE_CLOSE_MSG = "Start to safely close connection pool..." END_SAFE_CLOSE_MSG = "The connection pool has been safely closed." STACK_X_MSG = "Stack Xs when prepare X to ." LOGGING_LEVELS = { "CRITICAL": 50, "ERROR": 40, "WARNING": 30, "INFO": 20, "DEBUG": 10, "NOTSET": 0, }