Source code for autoflow.pipeline.components.classification.sgd
import numpy as np
from autoflow.pipeline.components.classification_base import AutoFlowClassificationAlgorithm
from autoflow.utils.data import softmax
__all__=["SGD"]
[docs]class SGD(
AutoFlowClassificationAlgorithm
):
module__ = "sklearn.linear_model.stochastic_gradient"
class__ = "SGDClassifier"
[docs] def predict_proba(self, X):
if self.hyperparams["loss"] in ["log", "modified_huber"]:
return super(SGD, self).predict_proba(X)
else:
df = self.estimator.decision_function(X)
return softmax(df)