Source code for autoflow.pipeline.components.preprocessing.scale.quantile_transformer
from typing import Dict
from autoflow.pipeline.components.feature_engineer_base import AutoFlowFeatureEngineerAlgorithm
__all__=["QuantileTransformerComponent"]
[docs]class QuantileTransformerComponent(AutoFlowFeatureEngineerAlgorithm):
class__ = "QuantileTransformer"
module__ = "sklearn.preprocessing"
[docs] def after_process_hyperparams(self, hyperparams) -> Dict:
hyperparams=super(QuantileTransformerComponent, self).after_process_hyperparams(hyperparams)
hyperparams["n_quantiles"]=min(self.shape[1],hyperparams["n_quantiles"])
return hyperparams