Source code for autoflow.pipeline.components.preprocessing.scale.quantile_transformer

from typing import Dict

from autoflow.pipeline.components.feature_engineer_base import AutoFlowFeatureEngineerAlgorithm

__all__=["QuantileTransformerComponent"]

[docs]class QuantileTransformerComponent(AutoFlowFeatureEngineerAlgorithm): class__ = "QuantileTransformer" module__ = "sklearn.preprocessing"
[docs] def after_process_hyperparams(self, hyperparams) -> Dict: hyperparams=super(QuantileTransformerComponent, self).after_process_hyperparams(hyperparams) hyperparams["n_quantiles"]=min(self.shape[1],hyperparams["n_quantiles"]) return hyperparams