Source code for autoflow.pipeline.components.regression.lightgbm

from autoflow.pipeline.components.classification_base import AutoFlowClassificationAlgorithm
from autoflow.pipeline.components.utils import get_categorical_features_indices
from autoflow.utils.data import to_array

__all__ = ["LGBMRegressor"]


[docs]class LGBMRegressor(AutoFlowClassificationAlgorithm): class__ = "LGBMRegressor" module__ = "lightgbm" boost_model = True tree_model = True
[docs] def core_fit(self, estimator, X, y=None, X_valid=None, y_valid=None, X_test=None, y_test=None, feature_groups=None, columns_metadata=None): categorical_features_indices = get_categorical_features_indices(X, columns_metadata) X = to_array(X) X_valid = to_array(X_valid) if (X_valid is not None) and (y_valid is not None): eval_set = (X_valid, y_valid) else: eval_set = None early_stopping_rounds=self.hyperparams.get("early_stopping_rounds") if eval_set is None: early_stopping_rounds=None return self.estimator.fit( X, y, categorical_feature=categorical_features_indices, eval_set=eval_set, verbose=False, early_stopping_rounds=early_stopping_rounds )
[docs] def before_pred_X(self,X): return to_array(X)